September 1, 2021

Team Profile:
What is a Geothermal Reservoir?
contributor(s)

photo credit:

Geothermal energy is renewable heat from the Earth, created when the planet formed.

Groundwater percolates downwards towards the deep heat source and becomes heated to high temperatures, before buoyancy returns these fluids to shallower levels, or even the surface. In the upper few kilometres of crust, faults and fractures in the rock act as natural channels – like the plumbing in a house moving water around.

Permeable rock formations store some of the rising fluids underground, forming geothermal reservoirs of heat.

Conceptual diagram of a geothermal system showing generic relationships between underground and surface expressions with water moving the heat from underground to the surface. Diagram shows wells tapping into the resource to produce energy for use at the surface.

Drilling into these reservoirs is a renewable, reliable and secure source of energy. In the Taupō Volcanic Zone, at around 2.5 km deep, a geothermal well can produce water and steam at about 300°C, resulting in about five megawatts of electricity generation – enough to power over 3,000 homes, or to run a large-scale timber drying kiln.

To understand a geothermal system and assess its energy potential, geoscientific measurement, interpretive techniques, and exploratory drilling and testing are undertaken (see: exploring for geothermal resources), and mathematical models are produced.  

Supercritical resources are supercharged geothermal systems

Current geothermal wells in New Zealand tend to be at depths between 1.5 km and 3 km. We are targeting supercritical conditions at depths greater than 4 km, where magmatic heat encounters permeable rocks (but supercritical is NOT magma), allowing superhot fluids to circulate. These fluids have a higher heat content and lower density than liquid water, so have the potential to generate much more energy than the same volume of a conventional geothermal fluid — supercritical  fluids at 400°C contains about five times as much energy as water at 200°C.

read more

categories

Learn
Science
Geology
Geophysics
Geochemistry
Modelling

tags

reservoir modelling
reservoir
geothermal fluids
geothermal system
geothermal reservoir
learning
science

Further Updates

February 17, 2021

Team Profile:

Supercritical: What the NZ Geothermal Community Wants to Know
Melissa Climo
February 3, 2021

Team Profile:

Using Magnetics to Map Geothermal Resources
Jenny Barretto
January 29, 2021

Team Profile:

Learning from Iceland's Supercritical Experience
Hidda Thorsteinsson